
#PitchOnline presents:#PitchOnline presents:

Massimo Bonanni
Paranormal Trainer, with the head in the Cloud and all the REST in microservices!

massimo.bonanni@microsoft.com

@massimobonanni



Scifoni Ivano Fabio Mannis Francesco Del Re Matteo Riccardi Valerio Benedetti

Stateful pattern & Azure Functions



What is serverless?

Stateful pattern & Azure Functions

*Supporting services, like storage and networking, may be charged separately.

Pay-per-use

Instant, event-driven scalability

Full abstraction of servers



What are Azure Functions?
An event-based, serverless compute experience that accelerates app 

development

Azure Functions = FaaS++

Enhanced development experience

Hosting options flexibility

Integrated programming model 



What are Azure Functions?

Stateful pattern & Azure Functions

Author functions in 
C#, F#, Node.JS, Java, 

and more

CodeEvents

React to timers, HTTP, or 
events from your favorite 

Azure services, with 
more on the way

Outputs

Send results to an 
ever-growing 

collection of services



Boost development efficiency



FaaS principles and best practices

Stateful pattern & Azure Functions

Functions must be stateless

Functions must not call other 

functions

Functions should do only one thing



… and workflows!?!?!

Stateful pattern & Azure Functions

Workflows manage state

Workflow is interactions between 

components

Workflows must do more than one 

thing



The magic is
Durable Functions!!



What are Durable Functions?

Stateful pattern & Azure Functions

Azure Functions
Extension

• Based on Azure Functions

• Adds new Triggers and 
Binding

• Manages state, 
checkpoints, and restarts

Durable Task 
Framework

• Long running persistent 
workflows in C#

• Used within various 
teams at Microsoft to 
reliably orchestrate long 
running operations

Languages

• C#

• JavaScript

• F#



Function chaining

Stateful pattern & Azure Functions

Relations between functions and queues aren’t clearly 
identifying

Queues are an implementation detail

Operation context management is difficult

Error handling is difficult 



Function chaining in Durable Functions

Orchestrator Function

Activity Functions



The magic is
Event Sourcing!!



Stateful pattern & Azure Functions

1. var x = await context.CallActivityAsync<int>("F1", null);

2. var y = await context.CallActivityAsync<int>("F2", x);

3. return await context.CallActivityAsync<int>("F3", y);

Orchestrator Function

Trigger

Orchestrator

Activity

F1 => return 42;

F2 => return value + 1;

F3 => return value + 2;

Event History

Orchestrator Started

Task Scheduled, F1

Task Completed, F1 => 42

Task Scheduled, F2

Task Completed, F2 => 43

Task Scheduled, F3

Task Completed, F3 => 45

Orchestrator Completed => 45



Stateful pattern & Azure Functions

DEMO
Event History



Orchestrator MUST be deterministic

Never write logic that depends on random numbers, 

current date/time, delay, etc.

Never do I/O in the orchestrator function

Never start custom thread in the orchestrator function

Do not write infinite loops

Stateful pattern & Azure Functions



FanIn-FanOut

Stateful pattern & Azure Functions

FanIn is simple, but FanOut is more complicated

The platform must track progress of all work

All the same issues of Function Chain



FanIn-FanOut in Durable Functions

Stateful pattern & Azure Functions

FanOut

FanIn



Human Interaction

Stateful pattern & Azure Functions

Handling race conditions between timeouts and approval

Need mechanism for implementing and cancelling timeout 
events

Same issues as the other pattern



Human Interaction in Durable Functions

Stateful pattern & Azure Functions

Timeout

Human

Coordination



Aggregator

Stateful pattern & Azure Functions

Storing the state

Correlation of event for a particular state

Syncronization of access to the state



Actor model
The actor model in computer science is a mathematical model of concurrent computation 
(originated in 1973). 

In response to a message it receives, 
an actor can: 

• make local decisions, 
• create more actors, 
• send more messages, 
• determine how to respond to the next message 

received. 

Actors are identified by ids and have their
own private state.

Actors can process only one message at time.

Stateful pattern & Azure Functions



The magic is
Durable Entities!!



Durable Entities aka Entity Functions

Stateful pattern & Azure Functions

Entity Functions define 
operations for reading 
and updating small piece 
of state

Entity Functions are 
functions with special 
trigger

Entity Functions are 
accessed using:

• Entity Name

• Entity key 

Entity Functions expose 
operations that can be 
accessed using:

• Entity Key

• Operation Name

• Operation Input

• Scheduled time



Access Entities

Two-way (round-trip) communication. 

You send an operation message to the entity, and then wait for the response message before 

you continue. 

The response message can provide a result value or an error result observed by the caller.

Calling

One-way (fire and forget) communication. 

You send an operation message but don't wait for a response. 

While the message is guaranteed to be delivered eventually, the sender doesn't know when 

and can't observe any result value or errors.

Signaling

Two-way communication.

You can retrieve the state of an entityState

Stateful pattern & Azure Functions

Orchestrator

Orchestrator
Client
Entity

Client



Anatomy of an Entity

Stateful pattern & Azure Functions

Properties (state)

Operations

Entry Function



Durable Entities vs Virtual Actor
Durable Entities Virtual Actors (Orleans)

Addressable via Entity ID

Execute operations serially

Created implicit when are called

Garbaged when not used 

Durability vs Latency Durability Latency

Timeout messaging No timeout Timeout

Message order FIFO FIFO not guaranteed

Message Deadlock No deadlock Deadlock

Stateful pattern & Azure Functions



Stateful pattern & Azure Functions

DEMO
Certification Profiles

Management



Takeaways

Stateful pattern & Azure Functions

Designed for reliability, not for latency

Workflow by code

Similar to Virtual Actor but not the same

Solve the concurrency, but think if is the right choice



Massimo Bonanni

Azure Technical Trainer @ Microsoft

massimo.bonanni@microsoft.com

@massimobonanni

Connect with me on LinkedIn

linkedin.com/in/massimobonanni/

http://bit.ly/MasteringServerless



Thank You! Our Socials

https://www.linkedin.com/company/sharpcoding/
https://twitter.com/SharpCoding1
https://github.com/sharpcode-it
https://www.facebook.com/groups/653854545072523


References
Durable Functions overview

https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-
overview?tabs=csharp

Developer's guide to durable entities in .NET
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-dotnet-

entities

Entity Functions
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-

entities?tabs=csharp

Durable Task Framework
https://github.com/Azure/durabletask

GitHub Demo
https://github.com/massimobonanni/StatefulPatternFunctions

Stateful pattern & Azure Functions

https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-dotnet-entities
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-entities?tabs=csharp
https://github.com/Azure/durabletask
https://github.com/massimobonanni/StatefulPatternFunctions

