#PitchOnline presents:

g
atte
ta‘e‘“\s?
6 3““.‘0“

\ Massimo Bonanni

Paranormal Trainer, with the head in the Cloud and all the REST in microservices!

massimo.bonanni@microsoft.com

@massimobonanni

@ Coding

Stateful pattern & Azure Functions

Scifoni lvano Fabio Mannis Francesco Del Re Matteo Riccardi Valerio Benedetti

~ .
(\# Coding

Stateful pattern & Azure Functions

What is serverless?

Full abstraction of servers

Developers can just focus on their code—there are no
distractions around server management, capacity planning, or
availability.

Instant, event-driven scalability

Application components react to events and triggers in near
real-time with virtually unlimited scalability; compute
resources are used as needed.

Pay-per-use
Only pay for what you use: billing is typically calculated on the

number of function calls,
code execution time, and memory used.*

*Supporting services, like storage and networking, may be charged separately. @ COdIng

i

What are Azure Functions?

An event-based, serverless compute experience that accelerates app
development

Azure Functions = FaaS++

101010 Integrated programming model
?Jloollocl Use built-in triggers and bindings to define when

a function is invoked and to what data it connects

Enhanced development experience

Code, test and debug locally using your preferred editor or the
easy-to-use web based interface including monitoring

\f Hosting options flexibility
[

Choose the deployment model that better fits your business
needs without compromising development experience

ﬁ‘. Stateful pattern & Azure Functions

What are Azure Functions?

Events Code Outputs
om = D= g =
® B =
-H — el
===
[— el
React to timers, HTTP. or : :
! & Author functions in Send results to an
ev?ztzrzir;\ré/icggg f\?v\i/%”te C#, F#, Node.JS, Java, ever-growing
: and more collection of services

more on the way

(& Coding

Trigger object

Your code

Input object

Output object

e

Trigger

%

Output Binding

(& Coding

ﬁ‘. Stateful pattern & Azure Functions

Faa$S principles and best practices

- —

Functions must be stateless

’ Functions must not call other
functions

Functions should do only one thingj

S ___g— - -

ﬁ‘. Stateful pattern & Azure Functions

@orkflows manage state \

Workflow is interactions between
| components

Workflows must do more than one

Kching /

i

Stateful pattern & Azure Functions

What are Durable Functions?

Azure Functions

Extension

e Based on Azure Functions

e Adds new Triggers and
Binding

¢ Manages state,
checkpoints, and restarts

Durable Task
Framework

Languages

e Long running persistent
workflows in C#

e Used within various
teams at Microsoft to
reliably orchestrate long
running operations

o CH
e JavaScript
e FH#

ﬁ‘. Stateful pattern & Azure Functions

Function chaining

2 EX2E B

e Relations between functions and queues aren’t clearly

identifying

a Queues are an implementation detail
e Operation context management is difficult
e Error handling is difficult

i

Function chaining in Durable Functions

[FunctionName("FunctionsChainingOrchestrator™)] OrCheStrator Fu nction
public static async|Task<int> Orchestrator([OrchestrationTrigger] IDurableOrchestrationContext context)
{

¢ Activity Functions

var X ¥ await context.CallActivityAsync<int>("F1", null);
var y ¥ await context.CallActivityAsync<int>("F2", x);
return|await context.CallActivityAsync<int>("F3", y);

¥
catch (Exception)

{
// Error handling ...

E‘etur‘n@; < >‘i‘< >-i-< >
F1 F2 F3

i

— Orchestrator FunCtlon

Stateful pattern & Azure Functions

var x = await context.CallActivityAsync<int>("F1", null);
2. vary

await context.CallActivityAsync<int>("F2", x);

3. return await context.CallActivityAsync<int>("F3", y);

Orchestrator Event History
Ve AN
I I Orchestrator Started
N\ Task Scheduled, F1
T Task Completed, F1 => 42
M99t /N 1% Task Scheduled, F2
Activity Task Completed, F2 => 43

Task Scheduled, F3
Task Completed, F3 => 45
F2 => return value + 1; Orchestrator Completed => 45

F3 => return value + 2;

F1 => return 42;

Stateful pattern & Azure Functions

|
|

Event History

ﬁ‘ Stateful pattern & Azure Functions

Orchestrator MUST be deterministic

Never write logic that depends on random numbers,
current date/time, delay, etc.

Never do I/O in the orchestrator function

Never start custom thread in the orchestrator function

Do not write infinite loops
(f) Coding

Stateful pattern & Azure Functions

Fanin-FanOut — <5 —

] CRE LReH
S ST B

F2
’

e FaniIn is simple, but FanOut is more complicated
Q The platform must track progress of all work
e All the same issues of Function Chain

-9 Stateful pattern & Azure Functions

Fanin-FanOut in Durable Functions

[FunctionName("FanOutFanInOrchestrator")]
public static async Task<int> Run([OrchestrationTrigger] IDurableOrchestrationContext context)

{

var parallelTasks = new List<Task<int>>();

var workBatch = await context.CallActivityAsync<in

FanOut

for (var 1 = @; 1 < workBatch.Length; i++)

{

Task<int> task = context.CallActivityAsync<int>("F2", workBatch[i]);
parallelTasks.Add(task);

await Task.WhenAll(parallelTasks);
var sum = parallelTasks.sum(t => t.Result);

Fanin

return await context.CallActivityAsync<int>("F3", sum);

(&) Coding

ﬁ‘. Stateful pattern & Azure Functions

Human Interaction

<P

ProcessApproval

<y =

RequestApproval

Escalate

Handling race conditions between timeouts and approval

Need mechanism for implementing and cancelling timeout
events

Same issues as the other pattern

-9 Stateful pattern & Azure Functions

Human Interaction in Durable Functions

[FunctionName("HumanInteractionOrchestrator")]
public static async Task Run([OrchestrationTrigger] IDurableOrchestrationContext context)

{
await context.CallActivityAsync("RequestApproval”, null);

using (var timeoutCts = new CancellationTokenSource())

{ et . I|”| Timeout

Task durableTimeout = context.CreateTimer(dueTime, timeoutCts.Token);

Task<bool> approvalEvent = context.WaitForExternalEvent<bool>("ApprovalEvent"); }-IL][]]Ear]

if (approvalEvent == await Task.WhenAny(approvalEvent, durableTimeout))

{ . .
timeoutCts.Cancel(); COOrdInathn

await context.CallActivityAsync("ProcessApproval™, approvalkEvent.Result);

}

else

{ <D =
await context.CallActivityAsync("Escalate"”, null);
} RequestApproval < >

} Escalate

<y

ProcessApproval

(&) Coding

ﬁ‘. Stateful pattern & Azure Functions

<

Aggregator

e Storing the state
e Correlation of event for a particular state

Syncronization of access to the state

ﬁ‘. Stateful pattern & Azure Functions

Actor model

The actor model in computer science is a mathematical model of concurrent computation
(originated in 1973).

Main
In response to a message it receives, thread
an actor can.
make local decisions, L>1IT]
create more actors,
send more messages,

determine how to respond to the next message
received.

Actors are identified by ids and have their
own private state.

Actors can process only one message at time.

ﬁ‘. Stateful pattern & Azure Functions

Durable Entities aka Entity Functions

Entity Functions define Entity Functions are Entity Functions are
operations for reading functions with special accessed using:

and updating small piece trigger « Entity Name

of state e Entity key

Entity Functions expose
operations that can be
accessed using:

e Entity Key

e Operation Name
e Operation Input
e Scheduled time

Stateful pattern & Azure Functions

@
Access Entities

Two-way (round-trip) communication.
You send an operation message to the entity, and then wait for the response message before Orchestrator

Ca"ing you continue.

The response message can provide a result value or an error result observed by the caller.

One-way (fire and forget) communication. 0 rCh eSt rator
You send an operation message but don't wait for a response. client
While the message is guaranteed to be delivered eventually, the sender doesn't know when
and can't observe any result value or errors. E .
ntity
Two-way communication. .
You can retrieve the state of an entity CIlent

(&) Coding

Stateful pattern & Azure Functions

Anatomy of an Entity —————

public class CertificationProfileEntity

{
private readonly IlLogger logger;

public CertificationProfileEntity(ILogger logger)[:]

P rO pe rties (State) [IsonProperty (" firstName™")]

public string FirstName { get; set; }

[IsonProperty("lastName")]
public string LastName { get; set; }

[IsonProperty("email™)]
public string Email { get; set; }

[IsonProperty("isInitialized")]
public bool IsInitialized { get; set; }

[IsonProperty("certifications")]
public List<Certification> Certifications { get; set; } = new List<Certification>();

public bool InitializeProfile(CertificationProfileInitializeModel profile)[:]

Operations

public bool UpdateProfile(CertificationProfileInitializeModel profile)[:]
public bool UpsertCertification(CertificationUpsertModel certification)[::
public bool RemoveCertification(Guid certificationId)[:]

public bool CleanCertiFications()[::

[FunctionName (nameof(CertificationProfileEntity))]

L]
Entr Fu nctlon public static Task Run([EntityTrigger] IDurableEntityContext ctx, ILogger logger)

=> ctx.DispatchAsync<CertificationProfileEntity>(logger);

ﬁ‘. Stateful pattern & Azure Functions

Durable Entities vs Virtual Actor

Durable Entities Virtual Actors (Orleans)

Addressable via Entity ID ¥\ V

Execute operations serially ¥\ V
Created implicit when are called % V

Garbaged when not used % V

Durability vs Latency Durability Latency

Timeout messaging No timeout Timeout
Message order FIFO FIFO not guaranteed

Message Deadlock No deadlock Deadlock

Stateful pattern & Azure Functions

DEMO

Certification Profiles
Management

(f Coding

Stateful pattern & Azure Functions

o
Takeaways

Designed for reliability, not for latency

Solve the concurrency, but think if is the right choice

Azu»ré' Serverless
Computing

/ Connect with me on LinkedIn \

anedin.com/in/massimobonanni//

Massimo Bonanni

= Azure Technical Trainer @ Microsoft
http://bit.ly/MasteringServerless

Jo -

massimo.bonanni@microsoft.com
@massimobonanni

cccccccc

AZURE
DEVELOPER
A IATE

El
SSOCIATI

*

AZURE
FUNDAMENTALS

(&) Coding

https://www.linkedin.com/company/sharpcoding/
https://twitter.com/SharpCoding1
https://github.com/sharpcode-it
https://www.facebook.com/groups/653854545072523

ﬁ‘. Stateful pattern & Azure Functions

References

“> Durable Functions overview

https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-
overview?tabs=csharp

> Developer's guide to durable entities in .NET

https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-dotnet-
entities

> Entity Functions

https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-
entities?tabs=csharp

> Durable Task Framework
https://github.com/Azure/durabletask

%> GitHub Demo
https://github.com/massimobonanni/StatefulPatternFunctions

https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-dotnet-entities
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-entities?tabs=csharp
https://github.com/Azure/durabletask
https://github.com/massimobonanni/StatefulPatternFunctions

